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Abstract—Quantifying the notion of fairness is under-explored
when users request different ratios of multiple distinct resource
types. A typical example is datacenters processing jobs with
heterogeneous resource requirements on CPU, memory, etc. A
generalization of max-min fairness to multiple resources was
recently proposed in [1], but may suffer from significant loss of
efficiency. This paper develops a unifying framework addressing
this fairness-efficiency tradeoff with multiple resource types. We
develop two families of fairness functions which provide different
tradeoffs, characterize the effect of user requests’ heterogeneity,
and prove conditions under which these fairness measures satisfy
the Pareto efficiency, sharing incentive, and envy-free properties.
Intuitions behind the analysis are explained in two visualizations
of multi-resource allocation.

I. INTRODUCTION
A. Motivation

Many works have studied the fairness of allocating a single
type of resource. Fairness can be quantified with a variety of
metrics, e.g. Jain’s index [2]. Other notions of fairness, includ-
ing proportional and max-min fairness, can be represented as
maximization of a-fair utility functions [3]. These approaches,
as well as others from economics and sociology, have recently
been unified as the unique family of functions satisfying four
axioms for fairness metrics [4]. Works such as [5]-[7] have
also studied the tradeoff between fairness and efficiency.

Despite these works, allocating multiple types of resources
has been much less studied, with [1] a recent notable ex-
ception. Indeed, it is unclear what “fair” means for a multi-
resource allocation. Each user in a network requires a certain
combination of different resources to process one job, which
may differ from user to user. For example, datacenters allocate
resources (memory, CPUs, etc.) to competing users with
different requirements. One user might run computational jobs
requiring more CPU cycles than memory, while another might
require the opposite. Figure 1’s simple example illustrates
the need for multi-resource fairness functions: here two users
require CPUs and memory to perform jobs. User 1 requires 2
GB of memory and 3 CPUs per job, while user 2 needs 2 GB
and 1 CPU per job. There are a total of 6 GB and 4 CPUs.

Many allocations might be considered “fair” in this exam-
ple: should users be allocated resources in proportion to their
resource needs? Or should they be allocated resources so as to
process equal numbers of jobs? The fairness measure proposed
in [1], called Dominant Resource Fairness (DRF), allocates
resources using max-min fairness on dominant resource shares.
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Fig. 1. An example of multi-resource requirements in datacenters.

In this example, DRF would allocate 0.76 jobs to user 1 and
1.71 jobs to user 2, for a total of 2.47 jobs processed. But this
allocation is somewhat inefficient; e.g., allocating 0.17 jobs to
user 1 and 2.83 jobs to user 2 yields a total of 3 jobs. An in-
between allocation is realized by adapting the well-known a-
fairness for multiple resources as in Section III-B. For a = 0.5,
user 1 has 0.57 jobs and user 2 has 2.29 jobs, for 2.86 total
jobs. Each of these allocations represents one point of the
fairness-efficiency tradeoff. This paper develops a unifying
framework for studying this tradeoff in light of multiple types
of resources and heterogeneity in users’ resource requirements.

Multi-resource allocation problems arise in increasingly
many applications. Datacenters selling bundles of CPUs, mem-
ory, and network bandwidth are just one example. In fact, even
the classical problem of bandwidth allocation in a congested
network can be viewed as a multi-resource allocation. Given
a network and its topology, we can view each link as a
separate resource with distinct capacity. Users are represented
by network flows using a pre-defined subset of links, and
resource requests on all the links are for each user.

In general, multi-resource allocation cannot be turned into
single-resource allocation by assuming different resources are
interchangeable. For example, CPU allocation cannot meet a
cloud client’s networking bandwidth requirements.

B. Unique Challenges of Multi-Resource Fairness

The following new challenges on fairness arise due to the
presence of multiple types of resources:

o In a single-resource scenario, users’ resource require-
ments can be represented with a scalar. With multiple
resources, users have distinct vectors of resource require-
ments, which must be scalarized before fairness can be
evaluated. We present two ways to visualize user hetero-
geneity in Section III-A and two scalarization methods
in Section III-B, yielding parametrized families of multi-
resource fairness measures that satisfy the axioms of [4].

« In a single-resource scenario, the most efficient allocation
uses the entire resource. In a multi-resource scenario,



however, users’ heterogeneous resource requirements
may not allow each resource to be completely used. Even
how to measure efficiency is unclear: should we use the
total number of jobs allocated!? Or the amount of leftover
resource capacity? Section V numerically examines both
of these efficiency metrics, while Props. 1 and 2 and their
corollaries examine the impact of user heterogeneity on
the number of jobs processed.

o The extension of max-min fairness to multiple resources
is shown in [1] to satisfy such properties as Pareto-
efficiency for certain parameter values. We characterize
the parametrizations under which our multi-resource fair-
ness functions satisfy Pareto-efficiency, sharing incentive,
and envy-freeness (Props. 3-5 and their corollaries).

o The existence of a fairness-efficiency tradeoff depends
on both users’ resource requirements and the subsequent
fairness evaluation. We show that a greater emphasis on
equity need not always decrease efficiency (Prop. 6) and
give analytical conditions on when the fairness-efficiency
tradeoff exists (Props. 7 and 8 and their corollaries).

After Section II's further discussion of related work, Section

IIT develops two new families of fairness functions, which we
call Fairness on Dominant Shares (FDS) and Generalized
Fairness on Jobs (GFJ). FDS includes the fairness measure
DRF proposed in [1] as a special case. We investigate key
properties of these functions in Section IV, and derive condi-
tions under which they are satisfied by FDS and GFJ. Section
V then applies our fairness functions to numerical examples of
datacenters. We examine the relationship between the fairness-
efficiency tradeoff and FDS and GFJ parametrizations.

The technical report contains proofs of all propositions [8].

II. RELATED WORK

Much of the existing theory on the fairness of resource
allocations is devoted to allocations of a single resource [4],
[9], [10] (e.g. allocating available link bandwidth to network
flows [11]-[13]). The recent work [4] develops the following
family of fairness functions for a single resource, unifying
previously developed fairness measures. It was proven that
this family, parametrized by two numbers, is the only family
of functions satisfying four simple axioms of fairness metrics:
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where 5 € R and A € R are parameters. The parameter 3 gives
the “type” of fairness measured by (1), and the parameter A
gives the emphasis on efficiency. A larger |\| indicates greater
emphasis on efficiency over fairness. If we take A = %, then
taking the limit as 5 — 1 yields proportional fairness.

Even multi-resource allocation problems, such as scheduling
jobs in a datacenter, are often treated as a single resource

problem (e.g. the Hadoop and Dryad schedulers [14]). Given

IThe phrases “jobs allocated” and “jobs processed” are used interchange-
ably throughout the paper.

the limitations of this approach, [1] generalizes max-min fair-
ness to multiple resource settings. Our work develops a unified
analytical framework for fairness of multi-resource allocations.
In particular, in contrast to [1], we study the tradeoff between
fairness and efficiency in multi-resource settings.

III. FAIRNESS-EFFICIENCY OF MULTI-RESOURCE
ALLOCATIONS

We first present “dual” visualizations of heterogeneity
among users’ requirements for multiple resources in Section
III-A. Section III-B then develops two new families of fairness
functions, which scalarize these resource requirement vectors
in order to evaluate the fairness of multi-resource allocations.
These two families are Fairness on Dominant Shares (FDS)
and Generalized Fairness on Jobs (GFJ). FDS measures the
fairness of users’ resource allocations by accounting for both
the number of jobs allocated to each user (a function of the
resources available) and the heterogeneity in different resource
requirements across users. GFJ, on the other hand, assumes
that users’ utility depends solely on the number of jobs they
are allocated, irrespective of their differing resource needs.

A. Visualizing User Heterogeneity

A major challenge of multi-resource fairness is incorpo-
rating the heterogeneity of different users’ requirements for
different resources into the assessment of its fairness. Visual-
izing this heterogeneity can yield useful insights. Moreover,
Section V examines in detail how heterogeneity affects the
optimal allocation and achieved efficiency.

Figure 2 provides two ways to visualize user heterogeneity.
Each user j requires RR;; of resource type 4 for each job.

In the first (top) visualization, each dimension and associ-
ated axis corresponds to a different type of resource (two types
of resources here for visual simplicity); the box represents the
resource constraints. The slope o; of the line corresponding to
each user ¢ is the ratio of that user’s requirements for the two
resources. The heterogeneity of users’ resource requirements
can be captured with the variance of the {o;}, which are as-
sumed to be realizations of a random variable . Homogeneity
occurs at 0 variance, i.e., the dashed line becomes straight.
Heterogeneity increases with the variance of o.

In the bottom visualization, each dimension and associated
axis corresponds to the jobs allocated to each user (two users
here for visual simplicity), with feasible allocations in the
shaded region bounded by linear resource constraints. The
slope 7; of constraint line ¢ reflects the ratio of user 1’s and
user 2’s requirements for resource ¢. Again, the variance of
the 7;, which are treated as realizations of a random variable
T, captures the heterogeneity of users’ resource requirements.
Homogeneity occurs at zero variance; in that case the resource
constraints reduce to one constraint. Heterogeneity increases
with the variance of .

B. Defining Multi-Resource Fairness

1) Fairness on Dominant Shares (FDS): As defined in
[1], a user’s dominant share is the maximum share of any
resource allocated to that user.
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Fig. 2. Two visualizations of user heterogeneity. The lines in the top graph
show the ratio of users’ requirements for two different resources, while the
lines in the bottom graph show the feasible allocation region. The slopes of
those lines reflect the ratio of two users’ requirements for each resource.

Let z; denote the number of jobs allocated to each user
j and C; the capacity of each resource i. Then we have the
resource constraints Z?Zl Rijz; < C; for all resources 4,
where R;; is the amount of resource ¢ which user j requires
for one job, and there are n users. For ease of notation, we
define ~;; = R;;/C, as the share of reosurce ¢ required by
user j to process one job. We let

1 = max { sz_j } 2

denote the maximum share of a resource required by user j
to process one job; then p;x; is user j’s dominant share.

We introduce the fairness measures fg RS:
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These fairness measures extend those developed in [4] for a
single resource; details on their derivation are given in that
work and the technical report [8]. Here 8 # 1 and A are pre-
specified parameters. Note that § = 1 is a trivial case, since

(3) then reduces to n 2721 ,ujm])A, so that each allocation
gives equal fairness. We make a standard assumption that all
resources and all jobs are infinitely divisible, which is typical
of many multi-resource settings [15], [16]. An illustrative
example of FDS is given in Section III-B3.

The fairness function (3) may be divided into two compo-
nents, one representing fairness and one efficiency. The sum
of the dominant shares raised to the power A represents effi-
ciency; thus, A parametrizes efficiency’s relative importance.

The remainder of (3) is parametrized exclusively by 8 and
represents the allocation’s fairness. It is easily seen that for any
value of 3 # 1, this component of (3) is maximized at an equal

allocation. However, the orderings of unequal allocations will
depend on the value of . If allocation A is more fair than
allocation B when 8 = f; is used to parametrize fairness,
allocation B may be more fair when 5 = 32 # ;1 is used.

Though different values of 3 give different types of fairness,
we can generally say that “larger 8 is more fair” As § —
o0, we obtain max-min fairness on the ratio of each user’s
dominant share to the sum of all the dominant shares.

As B — oo and A — —1, the fairness function fg ) ap-
proaches max-min fairness on the dominant shares. Dominant
resource fairness (DRF), proposed in [1], is thus a special case
of FDS. In our notation, DRF can be expressed as

7Mn$n} . 4)

Maximizing this equation subject to the constraints
Z?Zl R;jxz; < C;, Vi, yields the DRF-optimal allocation.
FDS is therefore a generalization of DRF, in which choosing
the parameters S and A\ allows one to achieve different
tradeoffs between fairness and efficiency.

FDS also includes the well-known «-fairness family of
functions as a special case. This fact easily follows from
the relationship of the single-resource functions in [4] to
a-fairness, which is generally used to measure fairness in
bandwidth allocation (see references in Section II). Taking
a=p>0and \ = % the FDS function (3) becomes

min {p121, pots,. ..

n 7
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optimizing this function is equivalent to optimizing the a-
fairness function on dominant shares
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2) Generalized Fairness on Jobs (GFJ): Since some users
require more resources per job than others, it might be more
fair for those who require more resources to be allocated fewer
jobs, thus increasing efficiency across all users. FDS captures
this perspective. However, an individual user often cares only
about the number of jobs processed (without accounting for
heterogeneous resource requirements), and hence each user’s
notion of fairness may be based only on the number of jobs
she is allocated. This motivates us to introduce another fairness
measure called Generalized Fairness on Jobs (GFJ), which
uses only the number of jobs allocated in the fairness function.

GFJ can be further motivated with bandwidth allocation
examples. The utility function used in these scenarios is
generally a-fairness applied to the bandwidth allocated to each
flow. These functions are therefore a special case of GFJ, a
family of functions given by

B n A
E T .
k=1
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Here 3 and A are two parameters (just as in FDS) and x; is
the number of jobs processed for user j. As for FDS, we have
the resource constraints E;’:l R;jx; < C; for each resource
1. An illustrative example is given in the next section.

For 3> 0and A = % GF]J reduces to a-fairness on the
number of jobs allocated to each user.

3) Differences between FDS and GFJ: We can summarize
FDS’ and GFJ’s approaches as follows:

o FDS measures fairness in terms of the relative size of the
dominant shares, explicitly accounting for heterogeneous
resource requirements in both the objective function and
the constraints. As a limiting case of FDS, DRF also
follows this approach.

e On the other hand, GFJ measures fairness only in terms
of the number of jobs allocated to each user; the het-
erogeneity in resource requirements only appears in the
resource constraints. Users requiring more resources are
thus treated equally, a result observed in Section V.

When p1; = p for all j, FDS and GFJ are equivalent.
Revisiting the example in the Introduction, we have the

resource constraints 2x; + 2xs < 6 and 3x1 + zo < 4. Thus,
the dominant share of user 1 is %xl, since user 1 requires %
of the available CPUs and % of the available memory for each
job. Similarly, the dominant share of user 2 is %xg, since user
2 requires % of the available memory and  of the available

CPUs for each job. FDS and GFJ can then be expressed as

max f(x1,22) s.b. 21 +2w0 <6, 3x1 + 22 <4, (8)

ZT1,T2

where the fairness functions for FDS and GFJ are respectively
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Figure 3 illustrates the approaches to multi-resource fair-
ness. Each row of the matrix shown represents one user’s
resource requirements. One simplistic approach would assume
perfectly substitutable resources; in that case, this matrix
immediately collapses into a vector of users’ single resource
requirements. However, resources are often not directly sub-
stitutable, e.g. CPUs and memory.

FDS and GFJ represent alternative approaches to the scalar-
ization of each row in Fig. 3’s matrix. FDS and its limiting
case DRF choose a dominant entry from the row vector of
users’ requirements. GFJ, on the other hand, scalarizes each
row by the number of jobs processed with a bundle of different
resources. These row-by-row scalarizations then yield another
vector of users’ scalars; evaluating fairness with ngS or EEJ
further reduces this vector to a final scalar quantifying fairness.

IV. PROPERTIES OF FDS AND GFJ

In this section, we prove key properties of the FDS and
GFJ functions introduced above. Section IV-A characterizes
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Fig. 3. Overall schematic of our multi-resource fairness approach.

the optimal fairness values in certain special cases, while
Section IV-B examines the conditions of § and A\ under which
FDS and GFJ satisfy important properties relevant to fairness
quantification and fairness-efficiency tradeoffs:

« What happens to the optimal allocations when users have
the same resource requirements?

o What fairness properties do FDS and GFJ satisfy? For
instance, are their optimal allocations Pareto-efficient?
Sharing incentive compatible? Envy-free?

o Does there always exist a fairness-efficiency tradeoff?

Finally, Section IV-C examines the conditions under which a
fairness-efficiency tradeoff exists.

We consider n users and m different resources. Users have
the same resource requirements when they are homogeneous,
or their heterogeneity is zero. If n = 2 or m = 2, user
heterogeneity may be visualized as in Fig. 2 in Section III-A.

A. Values of FDS and GFJ

Heterogeneity is measured by the variance in the slopes o;
or 7; of Fig. 2. When all of users have the same ratios of
multi-resource requirements (i.e., the variance of the {o;} and
{7;} is zero), the problem reduces to that of a single resource:

Proposition 1 (Reduction to Single-Resource Case):
Suppose that the resource constraints may be written as

i (P11 + pexo + .o+ ppey) < 1, )

i =1,2,...,m. Let Nmax = max; ;. Then the problem re-
duces to single-resource fairness on resource 1. Moreover, FDS
and DRF both yield the allocation z; = (nmax,ujn)_l. GFJ

_% n L;l
K ! Tmax Zizl Ky e

Definition 1 (Efficiency): Let X = x1+x2+. ..+, denote
the allocation efficiency.
In this special case, we also have the following corollary:

yields the allocation z; =

Corollary 1: For allocations that maximize DRF and FDS,
0ox
3th =

and the efficiency of these allocations increases the fastest if
min; p; is decreased. For allocations that maximize GFJ,
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In other words, the system’s efficiency will increase if the
user with the lowest j1; gives up some resources.

We now consider heterogeneous users, and assume that their
resource requirements R;; are uniformly distributed in [0, vC}]
for some v > 0. Then, as the number of users n — oo, the
optimal FDS and GFJ values converge as follows:

Proposition 2 (Optimal FDS and GFJ Values): The opti-
mal FDS value converges in probability as

-1 2m
lim (max fEPS — =1 10
n—oo ( OO’_l) n(m + 1) ( )
Thus, users’ asymptotic dominant share is %-n%ffl. In contrast,

the optimal GFJ value converges in probability as

— 2
lim (max fSFY b
(mae foo2a) 7 (v/mn/3+n)

n—oo

Users are asymptotically allocated resources for V%L jobs.
We note that v appears in (10) but not (11), since FDS uses
dominant shares to evaluate fairness. Scaling the resource
requirements by v will scale the optimal allocations by v~ !;
these cancel in calculating the dominant shares p;x;.

We thus see that in the limit of a large number of hetero-
geneous users, with § = co and A\ = —1, the optimal FDS
value increases while the optimal GFJ value decreases as more
resources are added to the system. This proposition highlights

the fundamental difference between FDS and GFJ.

=1

(1)

B. Three Key Properties of Fairness

We next turn our attention to fairness and its relationship
with efficiency, using three widely-used properties of fairness
functions (see e.g., [1] and the many references therein):

Definition 2: A function f is Pareto-efficient if, whenever
x Pareto-dominates y (i.e., x; > y; for each index ¢, and
xj > y; for some j), f(x) > f(y).

Definition 3: Sharing incentive is the property that no
user’s dominant share is less than %: each user has an incentive
to not simply split the resources equally.

Definition 4: Envy-freeness holds if no user envies another
user’s allocation. User j envies user k if v;pxy > v;;2; for
all resources %, with at least one strict inequality.

We investigate if and when these properties are satisfied by
FDS and GFJ. Our results show that the answer depends on
several factors, e.g. the values of the parameters J and .

We first consider Pareto-efficiency, which evidently holds
for large \. Based on [4], we can in fact specify a threshold
for A above which Pareto-efficiency holds:

Proposition 3 (Pareto-efficiency for FDS and GFJ): The
fairness functions (3) and (7) are Pareto-efficient if and only

if Al = (1 =5)/8].

The absolute value signs are necessary, as for 5 > 1, (3)
and (7) are negative. For this range of (3, a more negative
A therefore emphasizes efficiency. As Pareto-efficiency is a
highly desirable property for fairness functions (both single

and multi-resource), the following analysis considers only
values of A satisfying |A| > |(1 — 8)/0].

Proposition 4 (Sharing Incentive for FDS): Sharing incen-
tive is satisfied by the FDS-optimal allocation when A =
(1-p)/Bandp >1.For0<pg<1land A =(1-0)/8,
sharing incentive may not be satisfied.

We can further bound the allocation efficiency:

Corollary 2 (Bounds on Allocation Efficiency for FDS): If
B>0and A= (1— S)/B, the efficiency X > (max; ;).

In contrast to FDS, GFJ need not always satisfy sharing
incentive even for 5 > 1:

Corollary 3 (Sharing Incentive for GFJ): If exactly one
resource constraint >, Rijz; < Cj is tight at optimality

and for any 5 > 0, A = (1 — 3)/8, GFJ may not satisfy the
sharing incentive property.

For \ = ﬂ, the FDS function becomes equivalent to the
isoelastic -fair utility in economics; then 8 corresponds to a
measure of constant relative risk-aversion for individual users.?
As ( increases, individual risk-averse users find the resource
allocation more equitable and become collectively envy-free.
The following proposition establishes that this interesting
envy-free behavior emerges (for FDS) at a threshold of § > 1.

Proposition 5 (Envy-freeness for FDS): For > 0 and
A = (1 —p)/B, ie., the FDS function is the a-fair utility
function with o = 3, envy-freeness holds if g > 1.

In contrast, GFJ-optimal allocations need not be envy-free
for any value of 3:

Corollary 4 (Envy-Freeness for GFJ): For any 5 > 0 and
A = (1—B)/B, envy-freeness may not be satisfied.

C. Fairness-Efficiency Tradeoff

We now consider two ways in which a fairness-efficiency
tradeoff does not exist: first, an increased emphasis on fair-
ness need not decrease efficiency. Second, the efficiency-
maximizing allocation may also be the “most fair.”

Traditionally, a larger parameter o in «a-fairness functions
is thought to be “more fair;” this statement is made mathemat-
ically precise in [4]. In [11], however, it is shown that when
a network allocates bandwidth so as to maximize «-fairness,
total throughput in the network may increase with o and may
even decrease as capacity increases. These “counter-intuitive”
results hold in the general multi-resource problem:

Consider a family of utility functions U(x, «); here « is a
parameter indexing the family of functions, and the specific
functional form of U is not specified. For instance, we could
use the functions in (3) with « = 8 and A = (1 — 3)/8, i.e.,

’Isoelasticity and relative risk-aversion in economics are defined as
ou(z) =z "
Oz  u(x)

and f%s) respectively, where w is the utility function.



“a-fair” utility functions. We incorporate the resource capacity
constraints in the matrix inequality Rx < C, and assume that
R is a full-rank matrix consisting only of constraints which
are tight at the optimal allocation for the given value of a.

We let S be an (n — m) x n dimensional matrix whose
columns form a basis for the nullspace of R. The negative of
the utility function’s Hessian matrix is denoted by D, and we
define b = %, A =STDS, v = szb and j3; = flTsj,
where the s; are the columns of the matrix S. Let A; denote
the matrix A with the ith row replaced by 8 = [f1 B2+ - Bn]-
We use 6 to denote a direction of perturbation of the capacity
vector C and DX (d) to denote the derivative of X in the
direction of §. From [11], we have

0xX _ 17SA- 'S8T (12)
da
DX (5) = 1Tg%5 =1"D'RY(RD'R7)"'s. (13)

We can further prove the following proposition:

Proposition 6 (Efficiency Non-Monotonicity): Efficiency
increases with « if and only if

N-L
Z videtKi Z 0.
i=1

Moreover, efficiency may decrease with an increase in the

capacity vector C. If capacity increases proportionally, i.e.,

0 = eC for some small ¢, then DX (4) > 0.

(14)

As a special case, when only one capacity constraint is tight
(e.g., one resource), efficiency always increases with capacity.
The technical report [8] contains a numerical example in which
efficiency increases with .

We next examine the conditions under which an equal
allocation (equal dominant shares for FDS or an equal number
of jobs for GFJ) maximizes efficiency. In such scenarios,
there is no fairness-efficiency tradeoff; the most fair allocation
maximizes the total number of jobs processed. As this property
is an ideal case, it will likely be satisfied only under rather
stringent conditions. Indeed, our results show that this ideal
case occurs only when the resource constraints “line up.”

Proposition 7 (Maximizing Fairness and Efficiency (I)):
Suppose that m = n constraints are tight at the maximum-
efficiency allocation. Then this allocation equalizes the
dominant shares (maximizing FDS fairness) if and only if all

resources ¢ satisfy
n

>,

j=1 Hi

15)

for some constant p. The number of jobs per user is equalized
(maximizing GFJ fairness) if

n
E Yij =T
Jj=1

for some constant r and all resources <.

(16)

Xz

Maximum Efficiency Yoo

Xy + X = X* N\ Maximum Efficiency
T X+ Xp = X*
Resource

Constraints

Resource
Constraints

(a) FDS fairness.

(b) GFJ fairness.

Fig. 4. Illustration of Prop. 7 for two resources. In the left graph, the FDS-
maximizing allocation maximizes efficiency and equalizes dominant shares.
In the right graph, the GFJ-maximizing allocation maximizes efficiency and
equalizes the number of jobs processed.
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Fig. 5. TIllustration of Prop. 8 in two dimensions. In the left graph, 2 = 0
at the unique efficiency-maximizing allocation. In the right graph, multiple
efficiency-maximizing allocations exist.

Figure 4 illustrates these conditions in two dimensions. In
the left figure 4a, dominant shares are equal at the efficiency-
maximizing allocation, while in the right figure 4b the numbers
of jobs are equalized at the efficiency-maximizing allocation.

Our conclusions are more subtle when m < n constraints
are tight at an efficiency-maximizing allocation:

Proposition 8 (Maximizing Fairness and Efficiency (II)):
Suppose that m < n constraints are tight at an efficiency-
maximizing allocation x*. If this allocation is the unique
allocation maximizing efficiency, then at least one of the
xj = 0 and one user is allocated no jobs. If other allocations
also maximize efficiency, an allocation equalizing either the
dominant shares or number of jobs processed maximizes
efficiency if and only if at the equal allocation, the constraint
set intersects the hyperplane 2?21 ;= 2?21 x; on a set of
dimension at least 1.

Figure 5 illustrates these statements in two dimensions. The
left graph shows a unique efficiency-maximizing allocation
with only 1 tight resource constraint, and the bottom graph
shows a set of multiple efficiency-maximizing allocations.

We can use this proposition to derive a sufficient condi-
tion for the efficiency-maximizing allocation to equalize the
dominant shares or number of jobs for each user:

Corollary 5: Suppose m < n resource constraints hold at
the efficiency-maximizing allocation. Then if R;; > R;; for
some users j and k and all resources i, x; = 0 (user j is
allocated no jobs) at any efficiency-maximizing allocation.

If m = 1 (the single-resource case), this result implies the
following:



Corollary 6: The maximum efficiency allocation equalizes
the dominant shares (FDS) or jobs per user (GFJ) if and only
if p1; = p V users j. In other words, each user needs the same
amount of the single resource to process one job.

V. APPLICATIONS AND ILLUSTRATIONS

We consider an illustrative example of a datacenter with
CPU and RAM constraints. There are two users, each of whom
requires a fixed amount of each resource to accomplish a job.
Jobs are assumed to be infinitely divisible [15], [16]. In order
to benchmark performance, we use the same parameters as
[1]: user 1 requires 1 CPU and 4 GB of RAM for each job,
and user 2 requires 3 CPUs and 1 GB for each job. At first,
we assume 9 CPUs and 18 GB of RAM; we later vary these
constraint values to observe their impact on fairness.

Suppose that the fairness function is given by f (e.g. FDS
(3), DRF (4), GFJ (7)). Then the allocation problem is

max flz,y) st.x+3y<9 4de+y<18 (17)
where x and y are the number of jobs allocated to users 1 and
2 respectively.

We use DRF as the benchmark fairness to compare the
performance of our FDS and GFJ functions. We define percent
fairness as the percentage difference between the optimal
DRF fairness value (i.e., the minimum dominant share) and
the DRF fairness value of the allocation obtained from FDS
or GFJ. The percent efficiency is defined as the percentage
difference between the total number of jobs processed in the
given allocation and the maximum number of jobs that can
be processed, given the same capacity constraints. We also
introduce another efficiency measure, the leftover capacity
(i.e., the amount of unused resources).

We investigate the outcomes of the proposed fairness mea-
sures along two dimensions:

o Comparing the achieved efficiency when user heterogene-
ity and resource capacity are varied.

+ Examining the range of attainable fairness-efficiency
tradeoffs for different values of the parameters 5 and .

A. Efficiency

We first use our two efficiency measures—leftover capacity
and percent efficiency—to investigate user heterogeneity’s ef-
fect on achieved efficiency. Heterogeneity is measured by the
variance in the slopes 7; and o; of users’ resource require-
ments, as introduced in Section III-A’s Fig. 2. If two users
have identical resource requests, they become homogeneous,
and both variances are 0. At the other extreme, the users do not
share any resource requirements and the variances are infinite.

We calculate the optimal FDS, GFJ and DREF allocations for
B =2, A = —0.5. First, Fig. 6 examines the leftover capacity
as a function of the variance in 7. The heterogeneity was varied
by changing user 2’s RAM requirement from 1 GB to 13 GB.
Thus, the RAM constraint line in Fig. 2’s representation tilts
from very steep to very flat. This tilting geometrically explains

—FDS
---GFJ
4 -~ DRF (FDS, o= ) ||

Leftover Capacity (CPUs and GB)

0 05 1 15 2 25 3
Variance int

Fig. 6.  Too much or too little variance in T leads to inefficiency from

leftover capacity: Leftover capacity versus variance in user heterogeneity in a

datacenter example. Variances below 0.5 have only leftover CPUs; variances

above 0.5 have only leftover RAM.
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Fig. 7. Greater variance in T leads to DRF inefficiency in the number of
Jobs processed: Percentage efficiency versus variance in user heterogeneity.

the overall “V” trend in Fig. 6. When the RAM requirement
is below 3 GB (a steep constraint line), the variance of 7 is
over 0.5: only RAM is leftover. When the RAM requirement
is above 3 GB (a flatter line), the variance of 7 is less than 0.5:
only CPUs are leftover. The change in the leftover resource is
due to the changing shape of the feasible region.

In this example, we see that for low heterogeneity in
users’ resource requirements, FDS, GFJ and DRF have similar
efficiency values. In fact, we confirm Prop. I’s result that
at zero heterogeneity, DRF and FDS are optimized at the
same allocation. As heterogeneity increases in Fig. 6, DRF has
significant leftover capacity compared to GFJ and FDS. DRF
trades off efficiency to preserve users’ minimum dominant
share with increasingly heterogeneous resource requirements.
Even GFJ performs worse than FDS, which yields the lowest
leftover capacity. As FDS includes resource requirements in
its fairness function, we intuitively expect such a result.

We next examine the percent efficiency in jobs processed as
a function of the variances in 7 in Fig. 7. As in the previous
figures, for low heterogeneity in users’ resource requirements,
FDS, GFJ and DRF perform at similar efficiency levels. All
three achieve full efficiency for a 7 variance near 0.5. Again,
the efficiency attained is much higher (about 15%) for FDS
and GFJ than for DRF as the variance increases. Similar plots
for the variance of o are shown in the technical report [8].

In summary, enforcing DRF can significantly reduce ef-
ficiency as measured by either leftover capacity or percent
efficiency. In the technical report [8], we discuss a scenario in
which the number of users grows and their corresponding 7;
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are uniformly distributed. In this situation, the FDS-optimal
allocation’s efficiency becomes even more desirable.

Finally, we examine the impact of changing RAM capacity
on the attainable efficiency, as shown in Figure 8. We see that
when the dominant shares for both users are equal, at 6v/3
GB of RAM capacity, GFJ and FDS have the same range of
achievable efficiency. In general, 5 and A\ may be chosen so
that FDS and GFJ are more efficient than DRF; in fact, the
FDS-optimal allocation is always more efficient than DRF.

The impact of capacity expansion also highlights an interest-
ing dimension of the economy of scale in large networks. The
standard view is that a large scale helps smoothen temporal
demand fluctuations through statistical multiplexing, e.g., at
an aggregation point in a broadband access network. In addi-
tion to temporal “heterogeneity” (bursting at different times),
network users may have resource type heterogeneity: some ap-
plications need more CPU processing while others need more
storage or bandwidth. Can this heterogeneity be exploited
to more efficiently utilize different types of resources? The
answer depends on how these different resources are allocated
among the users. If DRF is used, for example, efficiency can
be quite low. However, the appropriate FDS parametrization
can indeed leverage user heterogeneity along with increases in
resource capacity, creating another type of economy of scale.

B. Fairness-Efficiency Tradeoffs

The previous section established that when users are very
heterogeneous, FDS and GFJ outperform DREF, achieving a
much greater efficiency. However, we expect that this larger
efficiency comes at a cost of decreased fairness. This section
examines the general behavior of fairness when a larger
efficiency is achieved. Here we measure fairness as percent
fairness with the DRF metric and efficiency as percent effi-
ciency on the number of jobs processed.

Figure 9 shows the optimal job allocations for different
values of 3, A = 1=8 FDS and GFJ become a-fair on
the dominant shares of and jobs allocated to each user,
respectively, for « = (. As [ increases, A decreases, so
that fairness is emphasized more than efficiency and FDS
asymptotes to DRF. For small 8 (more relative emphasis on
efficiency), the optimal FDS allocation maximizes efficiency.
In the case of GFJ, which emphasizes the fairness on jobs
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Fig. 9. Larger [ values lead to more equitable allocations: Optimal
allocations for various fairness measures, using o = [ fairness for FDS
and GFJ.
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using o = ( fairness for FDS and GFJ.

allocated, larger 8 values yield a more fair allocation of jobs
across users than FDS, as expected. Thus, the total number of
jobs processed (i.e., efficiency) is lower for GFJ than for FDS.
Figure 10 gives a representative plot of how this tradeoff
varies with 5, A = % As [ increases, the percent efficiency
from the FDS measure drops, approaching DRF as  — oo.
GF]J fairness increases until 5 = 2.6, at which point the GFJ-
optimal allocation is also DRF-optimal. (In Fig. 9, the GFJ
and DRF allocations intersect at 8 = 2.6). For larger values
of 3, GFJ quickly converges to an allocation with a more equal
number of jobs per user, decreasing efficiency. Efficiency in
FDS decreases more slowly since FDS attempts to make the
dominant shares, not the number of jobs, more equitable.
Finally, we show the interaction between capacity con-
straints and the range of fairness-efficiency tradeoffs achieved.
The shaded region in Fig. 11 shows the attained tradeoffs for
a large range of $ and A values; each point corresponds to
some (3 and A values in the FDS function, which achieve the
shown operating tradeoff. This achieved tradeoff depends on
the available capacity, with contour lines for various RAM
capacities shown in the figure. As RAM capacity increases
from 4 GB to 64/3 GB, the tradeoff stopped: one can increase
both fairness and efficiency. At a RAM capacity of 6v/3
GB, the conditions of Prop. 7 are satisfied, and efficiency is
maximized when the dominant shares are equal. When the
RAM capacity goes above 6v/3 GB up to 25 GB, user 1’s
dominant share WM decreases. Thus, an increase in
fairness requires an increase in x; and user 1’s CPU allocation.
User 2 is then allocated fewer jobs, decreasing efficiency. In
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this figure, one can achieve 100% efficiency and fairness when
RAM capacity is 64/3 GB, but such an ideal operating point
does not always exist. An analogous plot for GFJ functions is
shown in the technical report [8].

VI. FUTURE WORK

Some preliminary work shows that both FDS and GFJ can
be unified into a single framework. The 1dea is to use a p-

norm function g(y1,j, - - -, Vnj) = (Z )T ¥ to scalarize the
resource requirement vector of user j, and then evaluate the
resulting fairness by fs x. This method leads to a new family
of fairness measures, parameterized p, 3, and ), i.e.,

12 #
Jopr =sgn(1=8) (3 ZR 7"
J=1 \k=
oM
[ (2m) - as)
j=1 \k=1

Fairness f, g includes many fairness measures as special
cases. It is easy to verify that fo 5\ = fGFJ and foo g\ =
f5R°. Further, f1x gives the system’s total resource usage.
ThlS function again satisfies the four axioms of [4], as
do FDS and GFIJ. Moreover, Pareto-efficiency is satisfied for
A > |52
their corollarles conditions on p, 8 and A can be found, under
which sharing incentive and envy-freeness are satisfied.

. We expect that, in analogy with Props. 4-5 and

VII. CONCLUDING REMARKS

In this paper, we introduce FDS and GFJ, two families of
fairness functions for multi-resource allocations. FDS includes
as a special case the recently proposed generalization of max-
min fairness to multiple resources. Different parameterizations
of these functions generate a range of fairness-efficiency
tradeoffs, thus allowing for different degrees of emphasis on
fairness and efficiency for different network operation needs.

We consider three key properties of fairness functions:
Pareto-efficiency, sharing incentive, and envy -freeness. FDS
and GFJ are both Pareto-efficient if |A| > 1 . Neither FDS
nor GFJ always satlsﬁes sharing incentive or envy freeness for
0<f<1, =1~ Foranyﬁ>1and)\——shar1ng

incentive and envy-freeness are always satisfied for FDS but
may or may not be satisfied for GFJ.

Finally, we discuss a less theoretical direction of future
work: estimating the 5 and A\ values which correspond to
people’s preferences. We are exploring methods to estimate
these parameters based on experimental results from human
subjects. At present, we plan to ask subjects to rank given
resource allocations in order of preference. The 5 and A values
calculated from these results can help give a physical meaning
to these two parameters. Moreover, we plan to investigate if
people give consistent results and if different demographics
can be naturally grouped into different 5 and A values.
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